
Exercices and Solutions to:

Analysis of Phylogenetics and Evolution With R
(Second Edition)

Chapter 2

1. Start R and print the current working directory.� �
> getwd()� �
Suppose you want to read some data in three different files located in three different
directories on your computer: describe two ways to do this.

The first way is to change the working directory before and after reading each file:� �
> od <- setwd("DATA1/")

> X <- read.table("....

> setwd(od)� �
The function setwd() returns the value of the current working directory before chang-
ing it, so that it is easy to return to it after reading the data.

The second way is to prefix the file names with their respective directory names:� �
> X <- read.table("DATA1/....� �
One way or the other may be prefered depending on the situation. If the directories
have the same structure with the same file names, then the first solution is more
convenient. The second solution is simpler if there is only one file to read in each
directory.

2. Create a matrix with three columns and 1000 rows where each column contains a ran-
dom variable that follows a Poisson distribution with rates 1, 5, and 10, respectively
(see ?Poisson for how to generate random Poisson values).

We see here three solutions to the first part of this question. We first define the
parameters of the simulation with a vector lambda containing the values of the Poisson
rate, the sample size in n, and we extract the number of values in lambda. The first
solution is to create the matrix (X) and fill its columns with a for loop:� �
> lambda <- c(1, 5, 10)

> n <- 1000

> p <- length(lambda)

> X <- matrix(NA, n, p)

> for (i in 1:p) X[, i] <- rpois(n, lambda[i])� �
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This is probably the simplest and most efficient solution. The second solution is
similar to the first one except for the last two commands which are:� �
> X <- NULL

> for (i in 1:p) X <- cbind(X, rpois(n, lambda[i]))� �
This is probably only slightly less efficient than the first solution. The third solution
is simpler (and does not need to extract p:� �
> lambda <- c(1, 5, 10)

> n <- 1000

> X <- sapply(lambda, function(l) rpois(n, l))� �
Find two ways to compute the means of each column of this matrix.

The means can be calculated directly with:� �
> apply(X, 2, mean)

[1] 0.965 4.900 9.936� �
Or with a for loop:� �
> means <- numeric(p)

> for (i in 1:p) means[i] <- mean(X[, i])

> means

[1] 0.965 4.900 9.936� �
3. Create a vector of 10 random normal values using the three following methods.

(a) Create and concatenate successively the 10 random values with c.

(b) Create a numeric vector of length 10 and change its values successively.

(c) Use the most direct method.

Compare the timings of these three methods (see ?system.time) and explain the
differences.

The code below gives the three solutions after setting the value of n to 10:� �
> n <- 10

> ## (a)

> x <- NULL

> system.time(for (i in 1:n) x <- c(x, rnorm(1)))

user system elapsed

0.002 0.000 0.002

> ## (b)

> x <- numeric(n)

> system.time(for (i in 1:n) x[i] <- rnorm(1))

user system elapsed

0.002 0.000 0.002

2



> ## (c)

> system.time(x <- rnorm(n))

user system elapsed

0 0 0� �
All three methods give similar results. The differences of timings are very small for
this value of n.

Repeat this exercise with 10,000 values.

We only need to modify the first line of the previous code:� �
> n <- 1e4

> ## (a)

> x <- NULL

> system.time(for (i in 1:n) x <- c(x, rnorm(1)))

user system elapsed

0.165 0.007 0.173

> ## (b)

> x <- numeric(n)

> system.time(for (i in 1:n) x[i] <- rnorm(1))

user system elapsed

0.021 0.000 0.022

> ## (c)

> system.time(x <- rnorm(n))

user system elapsed

0.001 0.000 0.001� �
4. Create the following text file:

Mus_musculus 10

Homo_sapiens 70000

Balaenoptera_musculus 120000000

(a) Read this file with read.table using the default options. Look at the structure
of the data frame and explain what happened. What option should have been
used?

At the time of writing the book, read.table() had the option header = TRUE

by default, so that the first row of the file was taken as names of the variables.
With a recent version of R (4.2.1), the help page of this function explains the
new behavior of this option:

If missing, the value is determined from the file format: header is set
to TRUE if and only if the first row contains one fewer field than the
number of columns.

(b) From this file, create a data structure with the numeric values that you could
then index with the species names, for example,
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> x["Mus_musculus"]

[1] 10

Find two ways to do this, and explain the differences in the final result.

The first way uses a copy of the second column into the vector x, and setting its
names with the first column:� �
> X <- read.table("data_ch2.dat")

> x <- X$V2

> names(x) <- X$V1

> x["Mus_musculus"]

Mus_musculus

10� �
The second way uses the function setNames and we can check that the result is
identical to the first one:� �
> y <- setNames(X$V2, X$V1)

> identical(x, y)

[1] TRUE� �
5. Create these two vectors (source: [13]):

Archaea <- c("Crenarchaea", "Euryarchaea")

Bacteria <- c("Cyanobacteria", "Spirochaetes",

"Acidobacteria")

(a) Create a list named TreeOfLife so that we can do TreeOfLife$Archaea to
print the corresponding group.� �
> Archaea <- c("Crenarchaea", "Euryarchaea")

> Bacteria <- c("Cyanobacteria", "Spirochaetes",

+ "Acidobacteria")

> TreeOfLife <- list(Archaea = Archaea, Bacteria = Bacteria)

> TreeOfLife$Archaea

[1] "Crenarchaea" "Euryarchaea"� �
(b) Update TreeOfLife by adding the following vector:

Eukaryotes <- c("Alveolates", "Cercozoa", "Plants",

"Opisthokonts")

It should appear at the same level as Archaea and Bacteria.� �
> Eukaryotes <- c("Alveolates", "Cercozoa", "Plants",

+ "Opisthokonts")

> TreeOfLife$Eukaryotes <- Eukaryotes� �
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(c) Update Archaea by adding "Actinobacteria".

Actually, Actinobacteria is part of Bacteria, so the correct solution is:� �
> TreeOfLife$Bacteria <- c(TreeOfLife$Bacteria, "Actinobacteria")

> TreeOfLife

$Archaea

[1] "Crenarchaea" "Euryarchaea"

$Bacteria

[1] "Cyanobacteria" "Spirochaetes" "Acidobacteria"

[4] "Actinobacteria"

$Eukaryotes

[1] "Alveolates" "Cercozoa" "Plants"

[4] "Opisthokonts"� �
(d) Print all the lowest-level taxa.� �

> unname(unlist(TreeOfLife))

[1] "Crenarchaea" "Euryarchaea" "Cyanobacteria"

[4] "Spirochaetes" "Acidobacteria" "Actinobacteria"

[7] "Alveolates" "Cercozoa" "Plants"

[10] "Opisthokonts"� �
Chapter 3

1. Create a random tree with 10 tips.� �
> library(ape)

> tr <- rtree(10)� �
(a) Extract the branch lengths, and store them in a vector.� �

> x <- tr$edge.length� �
(b) Delete the branch lengths, and plot the tree.� �

> tr$edge.length <- NULL

> plot(tr)� �
(c) Give new, random branch lengths from a uniform distribution U [0, 10]. Do this

in a way that works for any number of tips.� �
> tr$edge.length <- runif(Ntip(tr))� �

(d) Restore the original branch lengths of the tree.� �
> tr$edge.length <- x� �
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2. Create a random tree with 5 tips, print it, and plot it.� �
> tr <- rtree(5)

> tr

Phylogenetic tree with 5 tips and 4 internal nodes.

Tip labels:

t2, t3, t4, t5, t1

Rooted; includes branch lengths.

> plot(tr)� �
Find the way to delete the class of this object, and print it again.� �
> class(tr) <- NULL

> tr

$edge

[,1] [,2]

[1,] 6 7

[2,] 7 8

[3,] 8 1

[4,] 8 2

[5,] 7 3

[6,] 6 9

[7,] 9 4

[8,] 9 5

$tip.label

[1] "t5" "t1" "t3" "t4" "t2"

$Nnode

[1] 4

$edge.length

[1] 0.88005925 0.16759254 0.43179953 0.01514436 0.36705115

[6] 0.27348595 0.39078180 0.97974093

attr(,"order")

[1] "cladewise"� �
Try to plot it again: comment on what happens.� �
> plot(tr)

Error in xy.coords(x, y, xlabel, ylabel, log) :

’x’ is a list, but does not have components ’x’ and ’y’� �
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plot is a generic function, thus is tr has the class "phylo" the command plot(tr)

calls the function plot.phylo() to draw a phylogenetic tree. If this class is deleted,
then plot.default is called and this one cannot find the expected data in tr.

The same comment can be made about print(), but in that case print.default()
can print the “unclassed” tr.

Find a way to force the plot of the tree as before.

The only solution is to restore the class of tr:� �
> class(tr) <- "phylo"

> plot(tr)� �
3. Generate three random trees with 10 tips. Write them in a file. Read this file in R.

Print a summary of each tree. Write a small program that will do these operations
for any number of trees (say N) and any number of tips (n).� �
> TR <- rmtree(3, 10)

> write.tree(TR, "TR.tre")

> TRb <- read.tree("TR.tre")� �
For printing a summary of each tree, we can do it with the following command:� �
sapply(TRb, summary)� �
But this prints a somehow lengthy summary for each tree. We may also replace
summary by print (which uses the print.phylo method). Here, we write our own
code to print only the number of tips of each tree:� �
> for (i in 1:length(TRb))

+ cat("Tree", i, ": Number of tips:", Ntip(TRb[i]), "\n")

Tree 1 : Number of tips: 10

Tree 2 : Number of tips: 10

Tree 3 : Number of tips: 10� �
This can be customized easily by adding more code in cat() (e.g., Nnode(TRb[i])).

The code can be easily transformed into a small program by replacing the first com-
mand (TR <- rmtree(3, 10)) by:� �
N <- 3

n <- 10

TR <- rmtree(N, n)� �
4. (a) Write a function that will read trees from the Pfam database, so that so we can

use it with:

read.pfamtree(accnum, type = "full")

where accnum is the accession number of the family, and type is the type of the
alignment (see p. 44).
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(b) Extract the tree #1000 in Pfam. Make three copies of this tree, and give them
branch lengths (i) all equal to one, (ii) so that the node heights are propor-
tional to the number of species, and (iii) randomly extracted from a uniform
distribution U [0, 0.1].

At the time of writing the book, the solution would have been:� �
read.pfamtree <- function(accnum, type = "full")

{

if (!type %in% c("meta", "seed", "full", "ncbi"))

stop("wrong value for argument ’type’")

a <- "http://pfam.sanger.ac.uk/family/tree/"

b <- paste0("download?alnType=", type, "&acc=", accnum)

ref <- paste0(a, b)

read.tree(ref)

}� �
However, the PFAM database is expected to be decommissioned in January 2023
with no planed replacement.1

5. Extract the sequences of the cytochrome b gene with the accession numbers U15717–
U15724 (source: [116]).

The sequences are obviously deposited on GenBank, so we prepare the accession
numbers in a vector with paste (or paste0) and pass them to read.GenBank:� �
> accnum <- paste0("U157", 17:24)

> X <- read.GenBank(accnum)� �
(a) Print the species names of each sequence.� �

> names(X)

[1] "U15717" "U15718" "U15719" "U15720" "U15721" "U15722"

[7] "U15723" "U15724"� �
read.GenBank() has been improved since the book was published; the species
names are now returned in a specific attribute and a description in a separate
attribute (see ?read.GenBank for details):� �
> attr(X, "species")

[1] "Ramphocelus_passerinii"

[2] "Ramphocelus_sanguinolentus"

[3] "Ramphocelus_icteronotus"

[4] "Ramphocelus_costaricensis"

[5] "Ramphocelus_nigrogularis"

[6] "Ramphocelus_costaricensis"

[7] "Ramphocelus_carbo"

[8] "Ramphocelus_bresilius"� �
1http://pfam.xfam.org/; accessed 2022-10-19.
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(b) Print, with a single command, the length of each sequence.� �
> lengths(X)

U15717 U15718 U15719 U15720 U15721 U15722 U15723 U15724

1045 1045 1045 1045 1045 1045 1045 1045� �
(c) Arrange the data in a matrix.� �

> X <- as.matrix(X)

> X

8 DNA sequences in binary format stored in a matrix.

All sequences of same length: 1045

Labels:

U15717

U15718

U15719

U15720

U15721

U15722

...

Base composition:

a c g t

0.267 0.351 0.134 0.247

(Total: 8.36 kb)� �
This would give an error if the sequences are not of the same length.

(d) Extract and store in three matrices the first, the second, and the third codon
positions of all sequences. Compute their base frequencies. What do you con-
clude?

The simplest way is to create three matrices with:� �
> POS1 <- X[, c(TRUE, FALSE, FALSE)]

> POS2 <- X[, c(FALSE, TRUE, FALSE)]

> POS3 <- X[, c(FALSE, FALSE, TRUE)]� �
An alternative, “programmatic” way is:� �
> POS <- vector("list", 3)

> names(POS) <- paste("Position", 1:3)

> for (i in 1:3) {

+ s <- logical(3)

+ s[i] <- TRUE

+ POS[[i]] <- X[, s]

+ }� �
This makes easier to compute the base frequencies:
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� �
> sapply(POS, base.freq)

Position 1 Position 2 Position 3

a 0.37464183 0.2331178 0.1936063

c 0.51038682 0.2956178 0.2471264

g 0.03044413 0.2413793 0.1311063

t 0.08452722 0.2298851 0.4281609� �
There is a very clear difference with respect to the position.

(e) Save the three matrices in three different files. Read these files, and concatenate
the three sets of sequences.

We prefer to use the list POS:� �
> for (i in 1:3)

+ write.dna(POS[[i]], paste0(names(POS)[i], ".fas"), "fasta")� �
Read these files, and concatenate the three sets of sequences.� �
> POSb <- vector("list", 3)

> for (i in 1:3)

+ POSb[[i]] <- read.dna(paste0(names(POS)[i], ".fas"), "fasta")

> Xb <- do.call(cbind, POSb)

> Xb

8 DNA sequences in binary format stored in a matrix.

All sequences of same length: 1045

Labels:

U15717

U15718

U15719

U15720

U15721

U15722

...

Base composition:

a c g t

0.267 0.351 0.134 0.247

(Total: 8.36 kb)� �
X and Xb have the same data but their columns are ordered differently.

6. (a) Write a program that will extract single nucleotide polymorphism (SNP) from a
sequence alignment. The output will include the position of the SNPs along the
sequence and the observed bases (alleles). You will include an option to output
the sequence of the constant sites.
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(b) Write a second program that will transform the above alignment into an object
of class "loci".

Chapter 4

1. Draw Fig. 4.11 using a color scale in place of the grey one. The figure should include
a legend.

2. Plot the phylogeny of avian orders, and color the Proaves in blue. Repeat this but
only for the terminal branches of this clade.

3. Suppose you have a factor representing a character state for each node and each tip
of a tree. Find a way to associate a color with each branch depending on the state
at both ends of the branch.

4. Consider the trees trc and trk. Do a comparison of branching times as suggested
above. This will include a bivariate plot with a dotted line x = y. You will also
indicate the node by their numbers on the plot.

5. Create a list of trees simulated using a Yule process with λ = 0.1 (see Chapter 7).
Sort the trees in increasing order of number of tips. Create an animation to visualize
sequentially the tree on top and its lineage-through time plot (Chapter 6) on bottom.� �
> library(animation)

> TR <- replicate(20, rbdtree(0.1, 0), simplify = FALSE)

> TR <- TR[order(sapply(TR, Ntip))]

> saveHTML(

+ for (i in 1:length(TR)) {

+ layout(matrix(1:2))

+ plot(TR[[i]], show.tip.label = FALSE)

+ ltt.plot(TR[[i]])

+ })� �
Chapter 5

1. (a) Show that ultrametric distances are also Euclidean.

(b) Simulate some data with rTraitCont and show that distances among these
variables may be Euclidean. Compare with data generated with rnorm.

(c) Show that DNA distances cannot be Euclidean. Find a distance method with
continuous variables that shows the same property. See the formula in ?dist

and compare with what you know on how DNA distances are calculated.
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2. Compare the seven methods available in upgma. You will draw a single figure with
the seven UPGMA trees and the necessary annotations. You will take a data set of
your choice.

3. Longer distances inferred from molecular sequences tend to have higher variances
than the shorter ones. Derive a weighted version of the least squares formula by
modifying equation 5.1 (p. 136) in order to give less importance to longer distances.
Find a diagnostic plot that will confirm the rationale of this weighting scheme. (Hint:
you may type example(lm) in R to find some inspiration.)

4. Consider a DNA sequence that evolves according to the Jukes–Cantor (JC69) model.

(a) Build the corresponding rate matrix using for the overall rate of change the value
3× 10−4.

The substitution rate is α = 10−4 and the diagonal elements are equal to minus
the overall rate of change:� �
> Q <- matrix(1e-4, 4, 4)

> diag(Q) <- 0-3*1e-4

> Q

[,1] [,2] [,3] [,4]

[1,] -3e-04 1e-04 1e-04 1e-04

[2,] 1e-04 -3e-04 1e-04 1e-04

[3,] 1e-04 1e-04 -3e-04 1e-04

[4,] 1e-04 1e-04 1e-04 -3e-04� �
(b) Compute, using two different approaches, the probability matrix for t = 1,

t = 1000, and t = 1× 106. What do you observe? Was that expected?� �
> matexpo(Q * 1000)

[,1] [,2] [,3] [,4]

[1,] 0.75274003 0.08241999 0.08241999 0.08241999

[2,] 0.08241999 0.75274003 0.08241999 0.08241999

[3,] 0.08241999 0.08241999 0.75274003 0.08241999

[4,] 0.08241999 0.08241999 0.08241999 0.75274003

> matexpo(Q * 1e6)

[,1] [,2] [,3] [,4]

[1,] 0.25 0.25 0.25 0.25

[2,] 0.25 0.25 0.25 0.25

[3,] 0.25 0.25 0.25 0.25

[4,] 0.25 0.25 0.25 0.25� �
For longer times, the probabilities tend to the expected frequencies of each base
as expected under a Markovian model.

(c) What could you conclude about phylogeny estimation from this exercise?

If the rate of substitution is large with respect to time, the sequences are expected
to be “saturated”, so that signal of ancestry will be erased.
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5. Consider a GTR model with the following parameters: α = 0.001, β = 5 × 10−4,
γ = 2 × 10−4, δ = 3 × 10−4, ϵ = 1 × 10−4, ζ = 5 × 10−5, πA = 0.35, πG = 0.17,
πC = 0.25, and πT = 0.23.

(a) Build the corresponding rate matrix.� �
> rates <- c(alpha = 0.001, beta = 5e-4, gamma = 2e-4,

+ delta = 3e-4, epsilon = 1e-4, zeta = 5e-5)

> Q <- matrix(0, 4, 4)

> Q[lower.tri(Q)] <- rates

> Q <- t(Q)

> Q[lower.tri(Q)] <- rates

>

> isSymmetric(Q)

[1] TRUE

>

> pi <- c(A = 0.35, G = 0.17, C = 0.25, T = 0.23)

>

> sum(pi) == 1

[1] TRUE

>

> Q <- pi * Q

> Q

[,1] [,2] [,3] [,4]

[1,] 0.000000 3.5e-04 1.75e-04 7.00e-05

[2,] 0.000170 0.0e+00 5.10e-05 1.70e-05

[3,] 0.000125 7.5e-05 0.00e+00 1.25e-05

[4,] 0.000046 2.3e-05 1.15e-05 0.00e+00

> diag(Q)

[1] 0 0 0 0

> diag(Q) <- -apply(Q, 1, sum)

>

> apply(Q, 1, sum)

[1] -5.421011e-20 3.388132e-21 8.470329e-21 6.776264e-21

> all.equal(apply(Q, 1, sum), rep(0, 4), tol = 1e-16)

[1] TRUE� �
(b) Compute the probability matrix for t = 1.� �

> P <- matexpo(Q)

> P

[,1] [,2] [,3] [,4]

[1,] 9.994052e-01 3.498616e-04 1.749387e-04 6.998043e-05

[2,] 1.699328e-04 9.997621e-01 5.100348e-05 1.700356e-05

[3,] 1.249562e-04 7.500512e-05 9.997875e-01 1.250318e-05

[4,] 4.598714e-05 2.300482e-05 1.150293e-05 9.999195e-01

> apply(P, 1, sum)

[1] 1 1 1 1

13



> library(expm)

> round(expm(Q) - matexpo(Q), 15)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0� �
(c) Find a method to simulate the evolution of a DNA sequence under this GTR

model for an arbitrary t.

(d) What are the expected base frequencies when t is very large?

6. Write R code to calculate the distance between two aligned nucleotide sequences with
the GTR model using equation 5.8 (p. 144). (Hints: you will need the functions
base.freq, Ftab, eigen, and solve. The ‘trace’ function is the sum of the diagonal
elements of a matrix.)

7. (a) Give the R code to calculate Py in Section 5.2.2. Compare with Px. How this
will affect subsequent calculations? Eventually try different values of α.

(b) Why the likelihood values do not sum to one?

(c) For site 2, why the likelihood for A is twice bigger than for T?

(d) How many parameters are involved in these calculations?

(e) Write an R function to calculate the likelihood of the (full) data; the arguments
of this function will be these parameters.

8. Sketch a function doing Bayesian estimation of phylogeny. The code should include
comments explaining the rationale of the choices.

9. Take the data prepared in Exercise 5 of Chapter 3.

(a) Build saturation diagrams for the whole sequence, and for each codon position.

(b) Examine graphically the effects of unequal transition and transversion rates
and / or unequal base frequencies on the distance estimates for each data set
(whole sequences and each codon position).

10. Generate 100 bootstrap trees from the woodmouse data (see p.176). Compute and
plot the consensus network displaying the splits with frequency 0.1 or more. Compare
with Fig. 5.13 and explain the differences. Repeat with 1000 bootstrap trees.

Chapter 6

1. Simulate for 99 time-steps two independent Brownian motion models with the same
initial values. These variables should be taken as two species that have diverged after
t = 1, and they should be stored in a two-column matrix.
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(a) Simulate the divergence of each species in two daughter-species at t = 100 under
the same model for 100 time-steps: the results should be stored in a four-column
matrix. Plot the whole evolution for the 200 time-steps on a single graph.

X <- matrix(NA, 100, 2)

for (i in 1:2)

X[, i] <- cumsum(c(0, rnorm(99)))

X2 <- matrix(NA, 100, 4)

for (i in 1:4)

X2[, i] <- cumsum(c(X[100, ceiling(i/2)], rnorm(99)))

matplot(101:200, X2, type = "l", col = 1, xlim = c(1, 200))

matlines(X, col = 1)

(b) Repeat (a) but using an Ornstein–Uhlenbeck model with α = 0.2, θ1 = −1 for
the first pair of species, and θ2 = 1 for the second one.

X <- matrix(NA, 100, 2)

for (i in 1:2)

X[, i] <- cumsum(c(0, rnorm(99)))

X2 <- matrix(NA, 101, 4)

X2[1, ] <- c(rep(X[100, 1], 2), rep(X[100, 2], 2))

a <- 0.2

t1 <- -20

t2 <- 20

for (j in 1:2) {

e <- rnorm(100)

for (i in 1:100)

X2[i + 1, j] <- -a*(X2[i, j] - t1) + e[i]

}

for (j in 3:4) {

e <- rnorm(100)

for (i in 1:100)

X2[i + 1, j] <- -a*(X2[i, j] - t2) + e[i]

}

#X2 <- X2[-1, ]

matplot(101:201, X2, type = "l", col = 1, xlim = c(1, 201))

matlines(X, col = 1)

(c) Repeat (b) with θ1 = −20 and θ2 = 20. Compare the results.

2. Repeat the analyses on the primate data with Moran’s I (Section 6.1.2) using weights
computed from the variance-covariance matrix (see ?vcv).

3. Simulate two variables with rnorm and two with rTraitCont. You will analyze these
pairs of variables with phylogenetically independent contrasts (Section 6.1.1) and with
generalized least squares (Section 6.1.5); you will do all regressions with and without
intercept. Find when the regression coefficients are the same with both methods.
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4. Calculate the expected values of the Brownian motion and the Ornstein–Uhlenbeck
models after 100 time-steps. Compare with the observed values from the simulations
above.

5. Simulate a standard Brownian motion process with dt = 0.1 until t = 100 (hint: there
should be 999 iterations in the simulation). Calculate the variance among replicates
of this process and compare with the one simulated above with dt = 1. Which
parameter of the latter we should modify to obtain similar variances?

6. Implement Desdevises et al.’s [54] method in R (see p. 216).

7. Consider the phylogenies estimated for Sylvia (Section 5.1.8). Compute the phylo-
genetically independent contrasts for migration distance using the following branch
lengths:

� The neighbor-joining estimates (Fig. 5.17);

� From the chronogram estimated by penalized likelihood (Fig. 5.21);

� Setting the node heights so that they are equal to the number of descendants
(see compute.brlen);

� All equal to one.

Compare the results and comment on the assumptions underlying the use of each set
of branch lengths.

8. Consider the neighbor-joining tree estimated for the genus Sylvia and the associated
bootstrap values.

(a) Compute the phylogenetically independent contrasts for the continuous variable
(migratory distance, mig.dist) in the ecological data set.

(b) We want to give more importance in the analysis to the contrasts associated
with the nodes that are well supported by the bootstrap analysis. Propose a
solution.

(c) Compare the two sets of contrasts.

Chapter 7

1. Show that Aldous’s branching model produces trees that tend to be balanced. Demon-
strate this directly (i.e., without simulating trees) and by using tree simulations.

2. Simulate several discrete traits on a phylogenetic tree. Find some procedures to
simulate a correlated evolution among these traits.

3. Simulate a sequence of nucleotides coding for a protein using as substitution rates 1,
0.8, and 2 for the three codon positions, respectively.
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4. Simulate three continuous characters and three discrete ones along a phylogeny. Pre-
pare a data frame with these six characters setting the rownames correctly.

5. Simulate some data in the same way than done to produce Fig. 7.3. Repeat the
simulation outputting the ancestral values. Plot the two traits but displaying the
nodes together with the tips. What analyses from Chapter 6 would you do on these
data?
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