
A Bit-Level Coding Scheme for Nucleotides

Emmanuel Paradis

April 20, 2007

In this document, I present the coding scheme used in ape since version
1.10 for DNA sequences. Its aim is to provide fast algorithms and efficient
programs for comparing sequences, particularly to compute evolutionary
distances. I also present results from a few simulations to assess the gain in
computing times compared to the previous coding scheme.

1 Bit-Level Coding Scheme

The main idea behind the coding scheme is to use the individual bits to
store information relative to each nucleotide in a sequence. A bit can take
the value 0 or 1, so it is appropriate to code presence or absence of a given
base. So, in a first approach, we could use four bits to code the state
of a nucleotide; for instance, 1000, 0100, 0010, and 0001, for adenine (A),
guanine (G), cytosine (C), and thymine (T), respectively. This scheme could
be used to code uncertainty, for instance, 1100 would mean ‘A or G’ (i.e.,
a purine). However, almost all computers read and write bits in groups
of eight (bytes). Consequently, a program cannot read (at least directly)
whether an individual bit is 0 or 1.

So the approach sketched above should be extended to include four more
bits that could be used to store additional information on the nucleotide.
Doing this way, a nucleotide is coded with the smallest unit of information
in a computer, that is a byte. Figure 1 summarizes the proposed scheme.
The bits 1–4 are used as described above. The fifth bit is set to 1 if the base
is known exactly (i.e., only one of the bits 1–4 is set to 1), 0 otherwise. The
sixth and seventh bits are used for aligned sequences: the former is set to 1 if
an alignment gap has been inserted, and the latter is set to 1 if the character
is completely unknown. The eighth bit is currently unused. Table 1 gives
the detailed coding scheme and the correspondance with IUPAC ambiguity

1



1 0 0 0 1 0 0 0

A G C T

Is the base known?

Alignment gap?

Is the character completely unknown?

(unused)

Figure 1: Use of the eight bits of the bit-level coding scheme.

code.1

The proposed bit-level coding scheme has the same memory requirements
than the commonly used coding based on the IUPAC ambiguity code if the
ASCII code, or another single-byte code; is used. However, uncertainty is
coded implicitly in the IUPAC code. For instance, ‘A or G’ is coded by
the letter R. Consequently, querying whether a particular base is known
exactly requires to check whether the letter is among A, G, C, or T. With
the bit-level coding scheme, it is only needed to check whether the fifth bit
is set to 1. This operation is done in some computer languages using bitwise
operators (see Appendix).

Instead of considering the 8 bits as a character from the (extended)
ASCII code, they are here considered as 8-bit unsigned integers, and so take
values between 0 and 255 (= 28

− 1). Consequently, usual numerical opera-
tors can be combined with bitwise operators to compare bases efficiently. As
an example, let us consider the case where one wants to compare two bases.
With the character coding scheme, this requires to run through a series of
string comparisons according to the ambiguity code. With the bit-level cod-
ing scheme, the bitwise operator “AND” is used to compare the two bases:
it sets the bits of the result to 1 if the input bits are both set to 1, and 0

1www.ncbi.nlm.nih.gov/SNP/iupac.html

2



otherwise. So, if two bases are different, the result of this comparison has
its four first bits set to 0 (0000xxxx, where x is either 0 or 1). It is then only
necessary to compare this result with the next larger 8-bit integer 00010000
(= 16): if it is less than 16, then both bases are different.

An advantage of the bit-level coding here is that this comparison proce-
dure is robust to uncertainty on the state of the nucleotides. For instance,
though the two letters A and R are different, the nucleotides they code for
may not be different because since R codes for ‘A or G’. With the bit-level
code, the first four bits of A and R are 1000 and 1100, respectively. The
operation ‘1000 AND 1100’ returns 1000, indicating that the two nucleotides
may not be different. On the other hand, the same operation on 1000 and
0011 (= Y = ‘C or T’) returns 0000, so that we are sure that both nu-
cleotides are different, even though one is not known with certainty. The
Appendix gives further detailed examples on more specific comparisons that
may be used in computing some evolutionary distances.

2 Implementation

The bit-level coding scheme can be implemented with any system or lan-
guage that can manipulate 8-bit unsigned integers, and that has bitwise
operators (e.g., C or C++). The current implementation has been done
with the C language using the unsigned char data type. It is available as a
series of macro functions (see Appendix). The unsigned char data type may
also be used in R where it is called "raw" data type.

Some utility functions are also available to read and write sequence files,
transform sequences from and to the bit-level coding scheme, compute base
frequencies, identify segregating sites, perform deletion of sites with gaps in
a set of aligned sequences, and compute some summary statistics such as
nucleotidic diversity, or the proportion of pairwise differences. Computation
of distances is possible under eleven evolutionary models (JC69, K80, F81,
K81, F84, BH87, T92, TN93, GG95, LogDet, and paralinear), as well as the
corresponding variances. A γ-correction for inter-sites variation is possible
when available from the literature (JC69, K80, F81, and TN93).

3



Table 1: The bit-level coding scheme for nucleotides presented in this paper.

Nucleotide IUPAC code Bit-level code Valuea

A A 10001000 136
G G 01001000 72
C C 00101000 40
T T 00011000 24
A or G R 11000000 192
A or C M 10100000 160
A or T W 10010000 144
G or C S 01100000 96
G or T K 01010000 80
C or T Y 00110000 48
A or G or C V 11100000 224
A or C or T H 10110000 176
A or G or T D 11010000 208
G or C or T B 01110000 112
A or G or C or T N 11110000 240
Alignement gap (–) 00000100 4
Unknown character (?) 00000010 2
a 8-bit unsigned integer

3 Simulation Study

3.1 Methods

I assessed the gain in computing time of evolutionary distances resulting
from the bit-level coding scheme. Three programs were selected: PHYLIP
version 3.61, the character coding scheme used in ape version 1.9-2, and
the bit-level coding scheme implemented in C and called from R (as im-
plemented in ape version 1.10 and later). Two nucleotidic sequences were
randomly generated so that 10% of the sites were changed randomly between
them. Thus, on average 7.5% of the sites were actually different between
both sequences. A few simulations showed that the proportion of variable
sites had no effect on computing times. The sequence length took the values
104, 105, 2×105, then up to 2×106 with steps of 2×105. The distances be-
tween each pair of sequences were calculated with the four models available
in PHYLIP (JC69, K80, F84, and LogDet) using the three programs succes-
sively. All the simulations were done with R version 2.4.0; the computing
times were recorded with R’s function system.time. This was replicated

4



Sequence length (106)

T
im

e 
(s

ec
on

ds
)

0
5

10

0.0 0.5 1.0 1.5 2.0

K80

0
5

10

0.0 0.5 1.0 1.5 2.0

JC69

0
5

10
15

20

F84

0
2

4
6

8

LogDet

PHYLIP Character coding Bit−level coding

Figure 2: Comparison of the computing times among different programs for
four different models with sequences up to 2 × 106 nucleotides.

10 times for each sequence length. A further set of simulations were run
using only the bit-level coding scheme with sequence lengths equal to 105,
and from 106 up to 107 with steps of 106. The same four models were used.

All simulations were done with a computer equiped with a processor at
2.33 GHz with 2 Gb of RAM running Linux Knoppix 5.0.1 (kernel 2.6.17).

3.2 Results

For a given program and a given model, the computing times were roughly
linearly related with the sequence length, though it seems that computing
times are overestimated by a linear approximation for the smallest sequence
lengths (Fig. 2). Overall, the character coding scheme used in ape 1.9-2
gave the worst performance, the bit-level coding scheme gave the best one,
and PHYLIP gave intermediate results. The exception was with the LogDet
model where PHYLIP performed better than the character coding scheme
for sequence lengths up to 6×105 nucleotides, but the difference was opposite
for longer sequences.

The detailed simulations with the bit-level coding scheme showed that
its computing time was around 0.1 sec for 2 × 106 nucleotides (Fig. 3).

5



Sequence length (106)

T
im

e 
(s

ec
on

ds
)

0.0

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

K80 JC69

F84

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

LogDet

Figure 3: Computing times for four different models using the bit-level
coding scheme for sequences up to 107 nucleotides.

For the same sequence length, the computing times of both other programs
were around 6 sec or longer depending on the model. The bit-level coding
scheme is thus at least 60 times faster. We can extrapolate linearly these
computing times to get 5 × 10−8

× L and 3 × 10−6
× L, respectively, where

L is the sequence length. So for L = 107, we find a computing time for
the bit-level coding scheme ≈ 0.5 sec, which agrees well with the observed
results of the detailed simulations (Fig. 3). For the same sequence length,
the computing time of ape 1.9-2 or PHYLIP is predicted to be at least 30
sec. L should be understood as the number of pairwise comparisons, that is,
in the case of computing a distance matrix among n sequences, the product
of the sequence length with n(n − 1)/2.

Interestingly, the longest computations with the bit-level coding scheme
were achieved with the LogDet model, whereas this was with F84 with the
character coding scheme or PHYLIP.

4 Discussion

The coding scheme for nucleotides presented in this paper results in very
substantial gains in computing times when comparing sequences. The main

6



reason of this is that the operators used for comparing bases are more ef-
ficient than the usual operators for comparing character strings. There is
also a contrast between the character coding scheme and the bit-level coding
scheme in the way the data are stored in R. In the former, each nucleotide
is stored as a single character string, so that reading the different sites of
a sequence requires to look for as many data arrays as sites. On the other
hand, with the bit-level coding scheme, each sequence is stored as a single
array, so that reading the different nucleotides is more direct in terms of
memory addressing. In fact, in the present implementation in R, even a set
of sequences is stored as a single data array.

The comparison between PHYLIP and ape is difficult because the for-
mer requires to read the data on the disk before computing the distance
effectively (the results are written on the disk, and this is included in the
computing time as well, but this is likely to be negligible since only one dis-
tance was calculated). In spite of this, PHYLIP outperformed the character
coding scheme for the longest sequences, except for the LogDet model. This
model requires to compute the 4× 4 contingency table of the two sequences
which is probably done in a more efficient way in R than in PHYLIP.

Williams & Zobel [2] proposed a bitwise code for the compression of
nucleotide databases in order to increase the speed of sequence searches.
Cameron & Williams [1] used this coding scheme to improve the performance
of BLASTN. This scheme uses a 2-bit code where each possible two-bits
pattern codes for a different base: 00, 10, 01, and 11, for A, G, C, and T,
respectively. It cannot code missing nucleotides which need to be handle in
a special way before the sequence can be processed: the missing nucleotides
are replaced randomly by one of the four bases; the positions of these sites
are stored in an additional array appended to the sequence (the missing data
are restored after processing). The main advantage of such a 2-bit coding
scheme is that it uses four times less memory to store the same sequence.
However, it is suitable for simple comparisons such as those performed in a
BLAST search, hence the possibility to compare four sites simultaneously.
The computation of evolutionary distances requires more complex pairwise
comparisons.

5 REFERENCES

[1] Cameron M. & Williams H. E. 2007. Comparing compressed sequences
for faster nucleotide BLAST searches. IEEE/ACM Trans. Comput. Biol.
Bioinform. in press. goanna.cs.rmit.edu.au/~mcam/nucompress.pdf.

7



[2] Williams H. & Zobel J. 1997. Compression of nucleotide databases for
fast searching. Computer Applications in the Biosciences 13: 549–554.

APPENDIX

The table below gives the currently available functions for the analysis of
nucleotidic sequences coded with the bit-level coding scheme. They are
actually defined in C as macros, and can be used like functions.

Function C code Value returned

KnownBase(a) a & 8 8 if a is known surely
IsAdenine(a) a == 136 1 if a is adenine
IsGuanine(a) a == 72 1 if a is guanine
IsCytosine(a) a == 40 1 if a is cytosine
IsThymine(a) a == 24 1 if a is thymine
IsPurine(a) a & 55 0 if a is a purine
IsPyrimidine(a) a & 199 0 if a is a pyrimidine
DifferentBase(a, b) (a & b) < 16 1 if a and b are different surely
SameBase(a, b) KnownBase(a) 1 if a and b are the same surely

&& a == b

The value returned is 0 if the condition is not met, except for IsPurine
and IsPyrimidine where a positive non-null value is returned. These two
functions may be defined as a > 63 and a < 64, respectively, if the base is
known surely; in both cases, the value 1 is returned if the condition is met,
and 0 otherwise. This is the form used in the simulations reported in this
paper.

It is possible to build more complicated functions while keeping the sim-
plicity and efficiency of the bit-level coding scheme. For instance, the two
following codes are used to compute the Tamura–Nei distance (TN93).

Code Value returned

(a | b) == 200 1 if one of the base is adenine and the other one
is guanine, 0 otherwise

(a | b) == 56 1 if one of the base is cytosine and the other one
is thymine, 0 otherwise

8


