Definition of Formats for Coding Phylogenetic
Trees in R

Emmanuel Paradis
22 December 2020

Contents
1 Introduction 1
2 Terminology and Notations 2
3 History 2
4 Definition of the Class "phylo" 2
4.1 Memory Requirements o 4
4.2 Storage Mode L 6
4.3 Limitson Tree Size e 6
4.4 Guidelines for Creating the Matrix edge 7
5 Tree Manipulation 8
5.1 Preorder Tree Traversal 9
52 Findinga Clade 10
5.3 Postorder Tree Traversal L 10
5.4 Relating Nodes and Tips to Other Data 10
5.5 Tracking Nodes e 11
5.6 Others e 11
6 Passing Trees from R to C 11
7 Definition of the Class "multiPhylo" 12
8 References 13

1 Introduction

Phylogenetic trees are complex data structures: coding them in computer programs requires
special care. Felsenstein [2] outlines the coding used in most computer programs for phylo-
genetic analyses. Such data structures cannot be used easily in an interactive way because
they are based on the recursive use of pointers. In addition, they cannot be extended or
modified without recompiling the whole program. In R a different approach is used based
on simple data structures like matrices or vectors. The class "hclust", used by the function
hclust of the package stats, codes hierarchical clusters with a two-column matrix indicating
the pairings of observations. To code phylogenetic trees in R, it was necessary to extend and
modify this class substantially. The class "phylo" introduced in ape in August 2002 aims
at this.

This document explains how phylogenetic trees are coded and handled in the R package
ape. Such data, like any R data, can be passed to C code for computing-intensive tasks.
How these data can be manipulated efficiently in R, and how they can be extended are also
briefly discussed. Section 3 gives some background on how this class has changed over time
and can be skipped if you are interested only in the current implementation.

2 Terminology and Notations

branch: edge

node: internal node; internal vertex
degree: the number of edges that meet at a node
tip: terminal node; terminal vertex; leaf; node (or vertex) of degree 1
n: number of tips
m: number of nodes
3 History

The general structure of the class "phylo" has been stable since the first release of ape: the
basic idea of a list with a matrix named edge coding the tree topology and additional vectors
(edge.length, tip.label, ...) has not changed since ape 0.1. The important changes that
happened over the years concern the details of the edge matrix. Initially, this matrix was
of mode character: the tips were coded "1" "2" ..., "n" and the nodes were coded with
n—qn m-2v .., "-m". This scheme is described in details in the first edition of APER [3].
It works well with small trees, but is rather inefficient for large ones (each character string
in the matrix requires its own pointer resulting in large memory requirements for big trees).

In 2006, it was envisaged to change the mode of the edge matrix to numeric while keeping
positive numbers for tips and negatives for nodes (see the version of this document dated
June 14, 2006). However, this was never implemented in ape. Instead, the scheme detailed
in this document was introduced in ape 1.9 released in November 2006. At this time, it
was not decided whether to store the values in the edge matrix as doubles (each value
requiring 8 bytes) or as integers (4 bytes).! Since ape 4.0 (November 2016), all functions in
the package insure that the edge matrix has storage mode integer, although most functions
work correctly if the storage mode is double (see below).

The class "phylo" was extended in ape 2.7-2 (June 2011) with the class "evonet" to
support trees with reticulations (or evolutionary networks). Starting from ape 5.0 (October
2017), trees with nodes of degree 2 (singleton or “elbow” nodes) can be handled in the class
"phylo".

With respect to tree file input/output, reading Newick files was supported with the first
version of ape using the function read.tree, and writing Newick files (write.tree) was
introduced in version 0.2 (September 2002). Reading and writing NEXUS files (read.nexus
and write.nexus) were introduced in ape 1.0 (February 2003). These four functions have
been gradually improved over the years and are still the main functions for input/output of
the class "phylo". The functions read.evonet and write.evonet were introduced in ape
5.0 to read and write files in Newick extended format.

4 Definition of the Class "phylo"

The class "phylo" is used to code standard phylogenetic trees with no reticulations, and all
internal nodes are of degree 2 or more. An object of class "phylo" is a list with the following
mandatory elements:

1. A matrix of integers named edge with two columns and as many rows as there are
branches in the tree;

2. A character vector of length n named tip.label with the labels of the tips;
3. A single integer value named Nnode giving the number of (internal) nodes;

4. An attribute class equal to "phylo".

1Both data types are coded in R with the mode numeric.

In the matrix edge, each branch is coded by the nodes it connects: tips are coded 1,...,n,
and internal nodes are coded n+1,...,n+m (n+ 1 is the root). Both series are numbered
without gaps. This matrix has the following properties:

e The first column has only values greater than n (thus, values less than or equal to n
appear only in the second column).

e All nodes appear in the first column at least once.

e The number of occurrences of a node in the first column is related to the nature of
the node: twice if it is dichotomous (i.e., of degree 3), three times if it is trichotomous
(degree 4), and so on. A node can be only once if it is a singleton node.

e All nodes, except the root (n + 1), appear once in the second column.

This representation is used for rooted and unrooted trees. For the latter, the position of
the root is arbitrary. The smallest tree of class "phylo" (a tree with a single branch) can
be created in R with:

> library(ape)

> tr <- list(edge = matrix(c(2L, 1L), 1, 2), tip.label = "a", Nnode = 1L)
> class(tr) <- "phylo"

> tr

Phylogenetic tree with 1 tips and 1 internal nodes.

Tip labels:
a

Rooted; no branch lengths.

> str(tr)

List of 3
$ edge : int [1, 1:2] 2 1
$ tip.label: chr "a"
$ Nnode : int 1

- attr(x, "class")= chr "phylo"

> write.tree(tr)

[1] n (a) ; n

Next is an example with a singleton node (n =1, m = 2):

> tr <- list(edge = matrix(c(2L, 3L, 3L, 1L), 2, 2),
+ tip.label = "a", Nnode = 2L)

> class(tr) <- "phylo"

> tr

Phylogenetic tree with 1 tips and 2 internal nodes.

Tip labels:
a

Rooted; no branch lengths.

> str(tr)

List of 3

$ edge : int [1:2, 1:2] 23 3 1
$ tip.label: chr "a"
$ Nnode : int 2

- attr(x, "class")= chr "phylo"

> write.tree(tr)

(11 "(C@);"

The following elements are optional:

1. A numeric vector named edge.length with the branch lengths: the length of this
vector is equal to the number of rows of edge;

2. A character vector of length m named node.label with the labels of the nodes;
3. A single numeric value named root.edge giving the length of the branch at the root.

4. An attribute "order" which can take the values "cladewise", "pruningwise", or
"postorder".

There is a correspondence between these elements and the structure of the mandatory ones

(e.g., the length of the ith branch of the tree coded by edge [i,] is given by edge.length[i]).

4.1 Memory Requirements

The code below shows the memory used by three phylogenetic trees provided as data in ape
and two random trees with n = 1000 and n = 10,000:

> data(bird.orders)

> data(bird.families)

> data(chiroptera)

> object.size(bird.orders)

3480 bytes

> object.size(bird.families)

15344 bytes

> object.size(chiroptera)

90280 bytes

> object.size(rtree(1000))
97304 bytes

> object.size(rtree(led))
961304 bytes

The matrix edge occupies a fixed quantity of memory which depends only on the number
of edges: this number multiplied by two (the number of columns of edge) and multiplied by

four (the number of bytes used to store an integer) gives the quantity of memory needed to
store edge. Since there are 2n — 2 branches in a binary rooted tree (as generated by rtree,
we can have a very good approximation with (2n —2) x 8:

> n <- 1e4
> tr <- rtree(n)
> (2 *xn-2) 8

[1] 159984

> object.size(tr$edge)
160200 bytes

The branch lengths each occupy eight bytes since they are stored as doubles, so they are
expected to use as much memory as the previous element:

> object.size(tr$edge.length)
160032 bytes

The largest part of the rest of the memory requirements is occupied by the tip labels:

> object.size(tr$tip.label)
640048 bytes

For big trees, the length of the tip labels is critical for the overall quantity of memory used
to store the object. rtree() gives by default the labels t1, t2, ... If longer labels are used,
this will obviously need more memory:

> tr <- rtree(1000)
> object.size(tr)

97304 bytes

> tr$tip.label <- paste("A_long_label_for_a_tree_with_1000_tips",
+ 1:1000, sep = "-")
> object.size(tr)

137304 bytes

Interestingly, R manages repetitive elements in vector of mode character (like tip.label)
in order to save memory, e.g.:

> tr$tip.label <- rep("A_long_label_for_a_tree_with_1000_tips", 1000)
> object.size(tr)

41400 bytes

This mechanism is also in action if only a subset of the character strings are repeated:

> tr$tip.label <- paste("A_long_label_for_a_tree_with_1000_tips",
+ 1:1000, sep = "-")
> object.size(tr)

137304 bytes

> tr$tip.label[1:500] <- "Another_quite_long_label_for_a_tree"
> object.size(tr)

89400 bytes

4.2 Storage Mode

The matrix edge can be stored either as integers or as doubles; the latter requiring twice
more memory than the former (the same applies to Nnode but the difference between both
storage modes is only four bytes in all cases). ape used to have no requirement for the storage
mode of this element, but since version 2.1 most functions in ape returns or manipulates
trees with edge stored as integers (this is enforced more strictly since ape 4.0; see Sect. 3).
The gain in efficiency is substantial for the following reasons:

e The memory gain for a list of trees (which may be tens of thousands, e.g., an output
from a Bayesian phylogenetic program) is potentially considerable.

e When passing the edge matrix to a C code, having it already as integers saves a
significant amount of computing time.

e Overall, integers are faster to manipulate than doubles.

The distinction on storage mode has no consequence for end-users, and should be ac-
comodated quite easily by developers. R extensively checks data types, so mixing integers
and doubles is generally not a problem. However, in the case of ape some data are passed
directly to some C code, and in some cases some care must be taken that the correct data
type is used. Considerable attention has been paid to insure that no fatal error may occur
in these situations; nevertheless, some functions may still need to be checked in this respect.

> checkValidPhylo(tr)

Starting checking the validity of tr...
Found number of tips: n = 1000

Found number of nodes: m = 999

Done.

> storage.mode (tr$edge)
[1] "integer"

> storage.mode (tr$edge) <- "double"
> checkValidPhylo(tr)

Starting checking the validity of tr...
Found number of tips: n = 1000
Found number of nodes: m = 999
MODERATE: the matrix 'edge' is not stored as integers
Done.

4.3 Limits on Tree Size
There are two potential limits on the size of a tree coded with the class "phylo":

e In R, a matrix cannot have more than 23! — 1 rows (and columns as well but the edge
matrix has only two columns) which puts an upper limit on the number of edges.

e This value is also the largest possible value for an integer in R (printed with .Ma-
chine$integer.max).

The second limit applies to the total number of internal and terminal nodes:

n+m<23 -1

For any kind of tree, the number of edges is equal to n +m — 1, so both limits are very close
although the second one will be reached first.

For fully binary trees, we have m = n — 1 for rooted trees, or m = n — 2 for unrooted
trees; so, the number of edges are 2n — 2 or 2n — 3, respectively. In both cases, the largest
possible value of n is therefore 23° = 1,073,741,824. The edge matrix of this tree would
require a bit more than 17 GB of memory:

> (2 x (2730) - 2) * 8
[1] 17179869168

4.4 Guidelines for Creating the Matrix edge

In practical situations, trees of class "phylo" are created in R by reading Newick or NEXUS
files, by simulating random trees, or by recontructing trees from data (nj(), ...) The
present section aims to introduce some ideas used in the following sections.

In the edge matrix, each row represents a branch: the node in the first column is the
origin of the branch, and the node or tip in the second column is its end. Note that for
unrooted trees, this order is arbitrary (except for the terminal branches) because the position
of the root is also arbitrary. This representation makes possible several generalizations, such
as multichotomies (here n = 3,m = 1):

> matrix(c(4, 4, 4, 1:3), 3, 2)

[,11 [,2]
[1,] 4 1
[2,] 4 2
[3,] 4 3

There is no mandatory order for the rows of edge, but they may be arranged in a way
that is efficient for computation and manipulation. For instance, consider the tree in Newick
format:

(., G0

Then the two following matrices are similar for edge:

> cbind(c(5, 6, 6, 5, 7, 7), c(6, 1, 2, 7, 3, 4))

(.11 [,2]
[1,] 5 6

, 6 1
, 6 2
[4,] 5 7
, 7 3
[6,] 7 4

> cbind(c(5, 5, 6, 6, 7, 7), c(6, 7, 1, 2, 3, 4))

(,11 [,2]

[1,1] 5 6
[2,] 5 7
[3,] 6 1
[4,] 6 2
[5,] 7 3
[6,1] 7 4

In the first representation the branches are grouped cladewise, whereas in the second one
the internal branches come first. Any order of the rows are valid with respect to the above
definition. However, the cladewise order has an interesting feature: it is straightforward to
find all the branches descendant of a given node (see Sect. 5.2).

There is another interesting order:

> cbind(c(6, 6, 7, 7, 5, 5), c(1, 2, 3, 4, 6, 7))

[,1] [,2]
[1,] 6 1
[2,] 6 2
[3,] 7 3
4,1 7 4
[5,1] 5 6
[6,1] 5 7

Here, the branches are arranged so that a “pruning” calculation can be done by reading down
the rows of edge. Additionally, if some conventions are taken, this arrangement can lead to
a unique representation for a given tree in the same way than the matchings proposed by
Diaconis & Holmes [1].2 This order is called pruningwise in ape.

5 Tree Manipulation

The table below shows how to perform a few basic operations on objects of class "phylo"
in R.

Operation High level Low level

How many tips? Ntip(tr) length(tr$tip.label)

How many nodes? Nnode(tr) tr$Nnode

How many branches? Nedge(tr) dim(tr$edge) [1]

How to find node x7 which(tr$edge == x) or
which(tr$edge == x, TRUE)

What is the ancestor i <- which(tr$edgel, 2] == x)

of node x? tr$edgel[i, 1]

What are the terminal n <- Ntip(tr)

branches? which(tr$edgel[, 2] <= n)

The high level functions (introduced in ape 1.10-1) are easier to remember. They have
been made generic in ape 4.0:

> Ntip

function (phy)
UseMethod ("Ntip")

2Matchings work only for rooted dichotomous trees.

<bytecode: 0x55d1d9adfb50>
<environment: namespace:ape>

> Ntip.phylo

function (phy)
length(phy$tip.label)
<bytecode: 0x55d1daab9840>
<environment: namespace:ape>

The other operations may also be wrapped in a function, for instance:

getAncestor <- function(phy, x)

{
if (x == Ntip(phy) + 1)
stop("node 'x' is the root")
i <- which(phy$edgel, 2] == x)
phy$edge[i, 1]
}

5.1 Preorder Tree Traversal

Preorder tree traversal means here: travelling through the tree from the root to the tips. If
an object of class "phylo" is in cladewise order, then the first element of the first column of
edge is by definition the root and numbered n + 1. This is true whether the tree is rooted
or not (remind that the root is arbitrary in the latter case). The beginning and end of each
clade connected to the root is found with:

start <- which(tr$edgel, 1] == length(tr$tip.label) + 1)
end <- c(start[-1] - 1, dim(tr$edge) [1])

The MRCA of these clades (i.e., the direct descendants of the root) can be found with:
tr$edge [start, 2]

As an example, we take the avian families tree:

> data(bird.families)

> n <- length(bird.families$tip.label)

> start <- which(bird.families$edge[, 1] == n + 1)
> end <- c(start[-1] - 1, dim(bird.families$edge) [1])
> start

[1] 1 28

> end

[1] 27 271
The two nodes connected to the root are:

> bird.families$edge [start, 2]

[1] 139 152

This can be checked graphically with:

plot(bird.families)
nodelabels ()

This approach can then be applied repeatedly from the root to the tips. For instance,
we find that the first node descendant of the root is tr$edge[start[1], 2]: we may thus
replace ‘n + 1’ above by this value, and ‘dim(tr$edge) [1]’ by ‘end[1]":

startB <- which(tr$edgel, 1] == tr$edgelstart[1], 2])
endB <- c(startB[-1] - 1, end[1])

Note the new names startB and endB; in practice, this may be simplified by using recursive
calls to a function.

If the object tr is in pruningwise order, then tree traversal may be done through succes-
sive search of node and tips numbers using which (as was done by most functions in ape).
However, this is less efficient.

5.2 Finding a Clade

For an arbitrary node, say nod, the approach above may be adapted to the following algo-
rithm:

1. Find the node ancestor of nod, store its number in anc, and store the number of the
branch in i.

2. Find the next occurrence of anc in tr$edge[, 1], store it in j.

The clade descending from nod is given by the rows ¢ + 1 to j — 1 of tr$edge. This
algorithm coded in R is:

i <- which(tr$edgel, 2] == nod)
anc <- tr$edgeli, 1]

tmp <- which(tr$edgel[, 1] == anc)
j <= tmp[which(tmp == i) + 1]
tr$edge[(i+1): (j-1),]

Note that it is straightforward to translate this code in C.

5.3 Postorder Tree Traversal

Postorder tree traversal means here: travelling through the tree from the tips to the root.
If the object tr is in pruningwise order, then postorder tree traversal is straightforward by
descending along the rows of tr$edge. Otherwise, successive searches must be done.

Gabriel Valiente pointed out to me that the pruningwise order in ape should be called
bottom-up order rather than postorder [4]. The postorder ordering has been introduced in
ape 3.0-6 and is now used by most functions of the package.

5.4 Relating Nodes and Tips to Other Data

Because tips and nodes are numbered sequentially from 1 to n 4+ m, it is straightforward
to associate them with other data. For instance, if we have n values of body mass for the
tips of the tree stored in the vector body.mass, then the value for the :th tip would be
body.mass[i], and the corresponding label is tr$tip.label[i]. If instead we have a data
frame DF with several such variables as columns (e.g., body mass, fecundity, ...), we would
relate the ith tip with the row DF[i,].

If the elements of body.mass or the rows of DF are not in the same order than the tip
labels, then the names or rownames of the former may be used, but this is less efficient than
numeric indexing. Depending on the context of the analysis, it may be better to reorder the
data first:

10

body.mass <- body.mass[tr$tip.label]
DF <- DF[tr$tip.label,]

and then use numeric indexing.

If some data are available for the tips and the nodes, they can be stored in a vector of
length n + m where the elements 1 to n will be the values for the tips, and those n+ 1 to m
will be for the nodes (e.g., the ancestral values of body mass). If values are available only
for nodes (e.g., posterior values) they can be stored in a vector of length m, and numeric
indexing may be used by offsetting with —n, i.e., for the ith node x[i - n] (for the root
i =n+ 1, this would be x[1]).

5.5 Tracking Nodes

The problem of tracking a node through successive tree manipulation is not easy because
nodes are numbered sequentially. For instance, if two trees are binded, the node numbers of
one of them must be changed. The solution to this problem is to use the element node . label.
Node labels may be created with:3

tr$node.label <- paste("node", 1:tr$Nnode, sep = "")

If a second tree, say trb, is involved here:

trb$node.label <- paste("trb_node", 1:trb$Nnode, sep = "")
Both trees may be binded now.

trc <- bind.tree(tr, trb)

To find the node number of say "trb_nodel" in the new tree:

which(trc$node.label == trb_nodel)

5.6 Others

There are a number of functions in ape to manipulate trees: it would be too long to detail
them here. More information can be found in ape’s manual or, equivalently, in the help
pages of the package. Further information may also be found on ape’s web site:

ape-package.ird.fr

6 Passing Trees from R to C

Because the class "phylo" uses only vectors,* it is easy to pass these data to C using the R
function .C. For instance, the matrix edge may be passed with:®

.C("nameofCfunction", as.integer(tr$edge),
dim(tr$edge) [1], PACKAGE = "nameofpackage")

which will be received in C with:

void nameofCfunction(int * edge, int * N)

3The function makeNodeLabel gives several possibilities to create similar labels.

4Matrices in R are actually vectors.

5Coercion to integers is not absolutely necessary if we are sure that the data are integers which is the
case with the values returned by dim and length.

11

where edge is a pointer to a C array of size 2N. The two nodes of the ith branch will be
accessed with edge[i - 1] and edge[i - 1 + N]. An alternative is to pass separately the
two columns of edge:

.C("nameofCfunction", as.integer(tr$edgel, 11),
as.integer(tr$edgel, 2]1), dim(tr$edge) [1],
PACKAGE = "nameofpackage")

with in the C program:
void nameofCfunction(int * edgel, int * edge2, int * N)

Now the two nodes will be accessed with edgel[i - 1] and edge2[i - 1]. A complete
tree structure may be passed with .C:

.C("nameofCfunction", as.integer(tr$edge), as.integer(tr$Nnode),
dim(tr$edge) [1], as.double(tr$edge.length),
as.character(tr$tip.label), as.character(tr$node.label),
PACKAGE = "nameofpackage")

received in C with:

void nameofCfunction(int * edge, int * nnode, int * N,
double * edge_length, char ** tip_label,
char ** node_label)

Note that other elements may be added in the arguments as long as they are R vectors.
The advantage of using .C is that data manipulation in C is similar to any program in
this language: the only constraint is that the function receiving the data from R must have
pointers and return void.

Using .Call or .External is more flexible:

.Call("nameofCfunction", tr, PACKAGE = "nameofpackage")
.External ("nameofCfunction", tr, PACKAGE = "nameofpackage")

where tr may be any R data. But the data manipulation in C is more complex since it deals
with SEXP (S expression) structures:

SEXP nameofCfunction(SEXP tr)

This is advantageous if the number and/or size of elements is unknown in advance. Fur-
thermore, R objects are not duplicated with .Call whereas they are always duplicated in
memory when using .C,% so the former is more efficient than the latter when handling a
lot of data. Some examples can be found in the sources of ape (see src/bipartition.c and
R/dist.topo.R, or src¢/tree_build.c and R/read.nexus.R).

7 Definition of the Class "multiPhylo"

An object of class "multiPhylo" is a list of one or several trees each of class "phylo". It
has two possible configurations:

1. All individual trees follow the definition in Section 4, and the resulting list has the
class "multiPhylo".

6This was optional before R 3.2.0.

12

2. The individual trees do not have an element tip.label, but otherwise follow the defi-
nition in Section 4, and the resulting list has the class "multiPhylo" and an attribute
TipLabel.

The second configuration implies that the ith tip in all trees have the same label. This
is useful when reading a list of trees read from a NEXUS file with a TRANSLATE block:
here the labels in the Newick are substituted by tokens 1, 2, ..., n. ape takes directly these
tokens and fills the matrix edge with them, and the object of class "multiPhylo" returned
has the attribute TipLabel taken from the translation table of the NEXUS file.

Other functions, such as rmtree or read.tree, return a list with the first configuration.
It is possible to switch to the second configuration with the function .compressTipLabel: it
will eventually renumber the elements of edge in each tree and delete the element tip.label.
An error occurs if the tip labels do not match among trees, or if some are duplicated within
a tree. The size of the object in memory is approximately halved:

> TR <- rmtree(100, 100)
> object.size(TR)

1091480 bytes

> object.size(.compressTipLabel (TR))
446840 bytes

There are extraction and subsetting methods for the class "multiPhylo" using $, [, and
[[which set correctly the class and the elements of the returned object:

> ape::: [[.multiPhylo"

function (x, i)

{
class(x) <- NULL
phy <- x[[i]]
if (!is.null(attr(x, "TipLabel")))
phy$tip.label <- attr(x, "TipLabel")
phy
}

<bytecode: 0x55d1daa37b10>
<environment: namespace:ape>

Manipulation of objects of class "multiPhylo" thus follows R’s standard operations on
lists. Note that such an object may contain only one tree in which case it will eventually be
extracted with TR[[1]].

Lists of trees can be passed to C code just like trees of class "phylo" (Sect. 6), but here it
is better to use the .Call or .External interface since the number of trees may be variable
(for an example see the C function prop_part in src/bipartition.c).

8 References

[1] Diaconis P. W. & Holmes S. P. 1998. Matchings and phylogenetic trees. Proceedings of
the National Academy of Sciences USA 95: 14600-14602.

[2] Felsenstein J. 2004. Inferring Phylogenies. Sinauer Associates, Sunderland, MA.

[3] Paradis E. 2006. Analysis of Phylogenetics and Evolution with R. Springer, New York.

[4] Valiente G. 2002. Algorithms on Trees and Graphs. Springer, New York.

13

