
Definition of Formats for Coding Phylogenetic

Trees in R*

Emmanuel Paradis

October 24, 2012

Contents

1 Introduction 1

2 Terminology and Notations 2

3 Definition of the Class "phylo" 2

3.1 Memory Requirements . 3
3.2 Storage Mode . 4
3.3 Guidelines for Creating the Matrix edge 5

4 Tree Manipulation 7

4.1 Preorder Tree Traversal . 7
4.2 Finding a Clade . 8
4.3 Postorder Tree Traversal . 9
4.4 Relating Nodes and Tips to Other Data 9
4.5 Tracking Nodes . 9
4.6 Example . 10

5 Uniqueness of Representation 10

6 Passing Trees from R to C 11

7 Others 12

8 Definition of the Class "multiPhylo" 12

9 References 13

1 Introduction

This document explains how phylogenetic trees are coded and handled in the
R package ape. Such data, like any R data, can be passed to C codes for
computing-intensive tasks. How these data can be manipulated efficiently in R,

*Compared to the version dated July 28, 2008, the present one corrects a small error in
the code of getAncestor on page 7 thanks to Santiago Claramunt.

1

and how they can be extended are also discussed. A companion to the present
document is the application programmer interface (API) to ape C code [4].

Phylogenetic trees are complex data structures: coding them in computer
programs requires special care. Felsenstein [2] outlines the coding used in most
computer programs for phylogenetic analyses. Such data structures cannot be
used easily in an interactive way because they are based on the recursive use of
pointers. In addition, they cannot be extended or modified without recompiling
the whole program. In R a different approach is used based on simple data
structures like matrices and vectors. The class "hclust", used by the function
hclust of the package stats, codes hierarchical clusters with a two-column ma-
trix indicating the pairings of observations. To code phylogenetic trees in R, it
was necessary to extend and modify this class substantially.

The class "phylo" introduced in ape in August 2002 aims at this. Its initial
definition in ape 0.1 has been useful in some applications. These and some
feed-back from users have pointed out to some weaknesses and limitations of
this initial definition. I detail below the new definition of the class "phylo"

introduced in ape 1.9 released in November 2006.

2 Terminology and Notations

branch: edge, vertex
node: internal node

degree: the number of edges that meet at a node
tip: terminal node, leaf, node of degree 1
n: number of tips
m: number of nodes

3 Definition of the Class "phylo"

The class "phylo" is used to code “acyclical” phylogenetic trees. These trees
have no reticulations, and all their internal nodes are of degree 3 or more, except
the root (in the case of rooted trees) which is of degree 2 or more. An object of
class "phylo" is a list with the following mandatory elements:

1. A numeric matrix named edge with two columns and as many rows as
there are branches in the tree;

2. A character vector of length n named tip.label with the labels of the
tips;

3. An integer value named Nnode giving the number of (internal) nodes;

4. An attribute class equal to "phylo".

In the matrix edge, each branch is coded by the nodes it connects: tips are
coded 1, . . . , n, and internal nodes are coded n+1, . . . , n+m (n+1 is the root).
Both series are numbered without gaps.

The matrix edge has the following properties:

� The first column has only values greater than n (thus, values less than or
equal to n appear only in the second column).

2

� All nodes appear in the first column at least twice.

� The number of occurrences of a node in the first column is related to the
nature of the node: twice if it is dichotomous (i.e., of degree 3), three
times if it is trichotomous (degree 4), and so on.

� All elements, except the root n+ 1, appear once in the second column.

This representation is used for rooted and unrooted trees. For the latter, the
position of the root is arbitrary.

The smallest tree of class "phylo" (a tree with a single branch) can be
created in R with:

> tr <- list(edge = matrix(c(2, 1), 1, 2), tip.label = "a", Nnode = 1L)

> class(tr) <- "phylo"

> str(tr)

List of 3

$ edge : num [1, 1:2] 2 1

$ tip.label: chr "a"

$ Nnode : int 1

- attr(*, "class")= chr "phylo"

The following elements are optional:

1. A numeric vector named edge.length with the branch lengths: this has
as many values of the number of rows of edge;

2. A character vector of length m named node.label with the labels of the
nodes;

3. A single numeric value named root.edge giving the length of the branch
at the root.

There is a correspondence between these elements and the structure of the
mandatory ones (e.g., the length of the ith branch edge[i,] is given by
edge.length[i]).

There are several substantial changes compared to the definition used until
version 1.8-5 of ape [3]: the most important one is that edge was previously
of mode character with a different coding (tips had positive numbers "1", . . . ,
"n", and nodes negative numbers "-1", . . . , "-m"). Compatibily is provided by
some functions in ape 1.9, and is still supported in ape 2.2-1 but it is planned
to be removed soon.

Note that this new definition uses the S3 classes; for an implementation using
S4 classes, see the package phylobase.1

3.1 Memory Requirements

The table below gives the sizes as given by object.size()with R 2.7.1 of three
phylogenies distributed with ape and often used in examples, and two random
trees generated with rtree.

1r-forge.r-project.org/projects/phylobase/

3

http://r-forge.r-project.org/projects/phylobase/

tree n bytes

bird.orders 23 2360
bird.families 135 11,000
chiroptera 917 64,168
random tree 1000 68,560

" 10,000 680,560

For big trees, the length of the tip labels will be critical for the overall
quantity of memory used to store the object. rtree gives by default the labels
t1, t2, . . . If longer labels are used, this will obviously need more memory:

> tr <- rtree(1000)

> object.size(tr)

89184 bytes

> tr$tip.label <- paste("A_long_label_for_a_tree_with_1000_tips", 1:1000, sep = "-")

> object.size(tr)

129184 bytes

Interestingly, R manages repetitive elements in vector of mode character
(like tip.label) in order to save memory, e.g.:

> tr$tip.label <- rep("A_long_label_for_a_tree_with_1000_tips", 1000)

> object.size(tr)

41272 bytes

This mechanism is also in action if only a subset of the character strings are
repeated:

> tr$tip.label <- paste("A_long_label_for_a_tree_with_1000_tips", 1:1000, sep = "-")

> object.size(tr)

129184 bytes

> tr$tip.label[1:500] <- "Another_quite_long_label_for_a_tree"

> object.size(tr)

85272 bytes

3.2 Storage Mode

The matrix edge can be stored either as integers or as doubles; the latter re-
quiring twice more memory than the former (the same applies to Nnode but
the difference between both storage modes is only four bytes in all cases). ape

used to have no requirement for the storage mode of this element, but since
version 2.1 most functions in ape returns or manipulates trees with edge stored
as integers. The gain in efficiency is substantial for the following reasons:

4

� The memory gain for a list of trees (which may be tens of thousands, e.g.,
an output from a Bayesian phylogenetic program) is potentially consider-
able.

� When passing the edge matrix to a C code, having it already as integers
saves a significant amount of computing time.

� Overall, integers are faster to manipulate than doubles.

The distinction on storage mode has no consequence for end-users, and
should be accomodated quite easily by developers. R extensively checks data
types, so mixing integers and doubles is generally not a problem. However, in
the case of ape some data are passed directly to some C code, and in some cases
some care must be taken that the correct data type is used. Considerable atten-
tion has been paid to insure that no fatal error may occur in these situations;
nevertheless, some functions may still need to be checked in this respect.

3.3 Guidelines for Creating the Matrix edge

In the matrix edge, each row represents a branch: the node in the first column is
the origin of the branch, and the node or tip in the second column is its end. Note
that for unrooted trees, this order is arbitrary (except for the terminal branches)
because the position of the root is also arbitrary. This representation makes
possible several generalizations, such as multichotomies (here n = 3,m = 1) . . .

> matrix(c(4, 4, 4, 1:3), 3, 2)

[,1] [,2]

[1,] 4 1

[2,] 4 2

[3,] 4 3

. . . or reticulations (n = 4,m = 3):

> cbind(c(5, 6, 6, 6, 5, 7, 7), c(6, 1, 2, 7, 7, 3, 4))

[,1] [,2]

[1,] 5 6

[2,] 6 1

[3,] 6 2

[4,] 6 7

[5,] 5 7

[6,] 7 3

[7,] 7 4

There is an arbitrary direction (6 → 7), from the smallest number to the largest
one. At the moment, it is still an open question whether these reticulations
should be coded in the matrix edge, or should rather be stored in a distinct
matrix to avoid confusion. As mentioned above, reticulations are not supported
in the class "phylo".

There is no mandatory order for the rows of edge, but they may be arranged
in a way that is efficient for computation and manipulation. For instance, con-
sider the tree in Newick format:

5

"((,),(,));"

Then the two following matrices are similar for edge:

> cbind(c(5, 6, 6, 5, 7, 7), c(6, 1, 2, 7, 3, 4))

[,1] [,2]

[1,] 5 6

[2,] 6 1

[3,] 6 2

[4,] 5 7

[5,] 7 3

[6,] 7 4

> cbind(c(5, 5, 6, 6, 7, 7), c(6, 7, 1, 2, 3, 4))

[,1] [,2]

[1,] 5 6

[2,] 5 7

[3,] 6 1

[4,] 6 2

[5,] 7 3

[6,] 7 4

In the first representation the branches are grouped cladewise, whereas in
the second one the internal branches come first. Any order of the rows are
valid with respect to the above definition. However, the cladewise order has an
interesting feature: it is straightforward to find all the branches descendant of
a given node (see § 4.2).

There is another interesting order:

> cbind(c(6, 6, 7, 7, 5, 5), c(1, 2, 3, 4, 6, 7))

[,1] [,2]

[1,] 6 1

[2,] 6 2

[3,] 7 3

[4,] 7 4

[5,] 5 6

[6,] 5 7

Here, the branches are arranged so that a “pruning” calculation can be done by
reading down the rows of edge. Additionally, if some conventions are taken, this
arrangement can lead to a unique representation for a given tree in the same
way than the matchings proposed by Diaconis & Holmes [1].2 I shall call the
above order pruningwise.

2Matchings work only for rooted dichotomous trees.

6

4 Tree Manipulation

The table below shows how to perform a few basic operations on objects of class
"phylo" in R.

Operation High level Low level

How many tips? Ntip(tr) length(tr$tip.label)

How many nodes? Nnode(tr) tr$Nnode

How many branches? Nedge(tr) dim(tr$edge)[1]

How to find node x? which(tr$edge == x) or

which(tr$edge == x, TRUE)

What is the ancestor i <- which(tr$edge[, 2] == x)

of node x? tr$edge[i, 1]

What are the terminal n <- Ntip(tr)

branches? which(tr$edge[, 2] <= n)

The high level functions (introduced in ape 1.10-1) are easier to remember
but also check for data type as can be seen in the code of Ntip:

> Ntip

function (phy)

{

if (!inherits(phy, "phylo"))

stop("object \"phy\" is not of class \"phylo\"")

length(phy$tip.label)

}

<bytecode: 0x27d6b58>

<environment: namespace:ape>

The other operations may also be wrapped in a function, for instance:

getAncestor <- function(phy, x)

{

if (x == Ntip(phy) + 1)

stop("node 'x' is the root")

i <- which(phy$edge[, 2] == x)

phy$edge[i, 1]

}

4.1 Preorder Tree Traversal

Preorder tree traversal means here: travelling through the tree from the root
to the tips. If an object of class "phylo" is in cladewise order, then the first
element of the first column of edge is, by definition, the root and numbered
n + 1. This is true whether the tree is rooted or not (remind that the root is
arbitrary in the latter case). The beginning and end of each clade connected to
the root is found with:

start <- which(tr$edge[, 1] == length(tr$tip.label) + 1)

end <- c(start[-1] - 1, dim(tr$edge)[1])

7

The MRCA of these clades (i.e., the direct descendants of the root) can be found
with:

tr$edge[start, 2]

As an example, we take the avian families tree:

> data(bird.families)

> n <- length(bird.families$tip.label)

> start <- which(bird.families$edge[, 1] == n + 1)

> end <- c(start[-1] - 1, dim(bird.families$edge)[1])

> start

[1] 1 28

> end

[1] 27 271

The two nodes connected to the root are:

> bird.families$edge[start, 2]

[1] 139 152

This can be checked graphically with:

plot(bird.families)

nodelabels()

This approach can then be applied repeatedly from the root to the tips. For
instance, we find that the first node descendant of the root is tr$edge[start[1],
2]: we may thus replace ‘n + 1’ above by this value, and ‘dim(tr$edge)[1]’
by ‘end[1]’:

startB <- which(tr$edge[, 1] == tr$edge[start[1], 2])

endB <- c(startB[-1] - 1, end[1])

Note the new names startB and endB; in practice, this may be simplified by
using recursive calls to a function (see § 4.6).

If the object tr is in pruningwise order, then tree traversal may be done
through successive search of node and tips numbers using which (as was done
by most functions in ape). However, this is less efficient.

4.2 Finding a Clade

For an arbitrary node, say nod, the approach above may be adapted to the
following algorithm:

1. Find the node ancestor of nod, store its number in anc, and store the
number of the branch in i.

2. Find the next occurrence of anc in tr$edge[, 1], store it in j.

8

The clade descending from nod is given by the rows i+1 to j−1 of tr$edge.
This algorithm coded in R is:

i <- which(tr$edge[, 2] == nod)

anc <- tr$edge[i, 1]

tmp <- which(tr$edge[, 1] == anc)

j <- tmp[which(tmp == i) + 1]

tr$edge[(i+1):(j-1),]

Note that it is straightforward to translate this code in C.

4.3 Postorder Tree Traversal

Postorder tree traversal means here: travelling through the tree from the tips to
the root. If the object tr is in pruningwise order, then postorder tree traversal is
straightforward by descending along the rows of tr$edge. Otherwise, successive
searches must be done.

Gabriel Valiente pointed out to me that the pruningwise order in ape should
be called bottom-up order rather than postorder [5].

4.4 Relating Nodes and Tips to Other Data

Because tips and nodes are numbered sequentially from 1 to n+m, it is straight-
forward to associate them with other data. For instance, if we have n values
of body mass for the tips of the tree stored in the vector body.mass, then the
value for the ith tip would be body.mass[i], and the corresponding label is
tr$tip.label[i]. If instead we have a data frame DF with several such vari-
ables as columns (e.g., body mass, fecundity, . . .), we would relate the ith tip
with the row DF[i,].

If the elements of body.mass or the rows of DF are not in the same order
than the tip labels, then the names or rownames of the former may be used,
but this is less efficient than numeric indexing. Depending on the context of the
analysis, it may be better to reorder the data first:

body.mass <- body.mass[tr$tip.label]

DF <- DF[tr$tip.label,]

and then use numeric indexing.
If some data are available for the tips and the nodes, they can be stored in a

vector of length n+m where the elements 1 to n will be the values for the tips,
and those n + 1 to m will be for the nodes (e.g., the ancestral values of body
mass). If values are available only for nodes (e.g., bootstrap values) they can be
stored in a vector of length m, and numeric indexing may be used by offsetting
with −n, i.e., for the ith node x[i - n] (for the root i = n+ 1, this would be
x[1]).

4.5 Tracking Nodes

The problem of tracking a node through successive tree manipulation is not easy
because nodes are numbered sequentially. For instance, if two trees are binded,
the node numbers of one of them must be changed. The solution to this problem
is to use the element node.label. Node labels may be created easily with:

9

tr$node.label <- paste("node", 1:tr$Nnode, sep = "")

If a second tree, say trb, is involved here:

trb$node.label <- paste("trb_node", 1:trb$Nnode, sep = "")

Both trees may be binded now.

trc <- bind.tree(tr, trb)

To find the node number of say "trb_node1" in the new tree:

which(trc$node.label == trb_node1)

4.6 Example

As an example of using the new definition of the class "phylo" and the guidelines
above, I rewrote the function rtree. The logic of the algorithm is the same in
both versions: splitting repeatedly a pool of n tips until splitting cannot be done.
But the implementations in R are different. In the old version, the branches were
defined successively and the matrix edge was filled along its rows; the latter were
reordered at the end. In the new version, the rows are filled with respect to the
size of the clades using a recursive function, so that no reordering is needed at
the end. The following table compares the timings of the two versions.3

n old new gain

10 0.026 0.0006 43
100 0.290 0.003 100
1000 4.017 0.030 134

This shows that considerable improvement can be achieved even using R
codes only. Furthermore, the algorithm is now more appropriate to be coded in
C, so that further improvement seems possible. Note that the operation done
by rtree is actually a preorder tree traversal: thus, this operation can be done
in a very short time with R code.

5 Uniqueness of Representation

At the moment, this remains unsolved bacause even adopting one of the rules
described above for the order of the branches may lead to several representations
of the same tree. Additional rules are needed. Some open questions:

� Is there an order that makes tree manipulation optimal? (see above for
some partial answers)

� Do we really need a standard, unique order?

Keep in mind that the rules should work for rooted and unrooted, dichoto-
mous and multichotomous trees (and possibly reticulograms but this is set aside
for the moment).

3Timings averaged over 100 consecutive repetitions with a for loop, processor at 1.86GHz,
2Gb RAM, Linux Knoppix 4.0, R 2.3.0, ape 1.8-3.

10

6 Passing Trees from R to C

Because the class "phylo" uses only vectors,4 it is easy to pass these data to C
using the R function .C. For instance, the matrix edge may be passed with:5

.C("nameofCfunction", as.integer(tr$edge),

dim(tr$edge)[1], PACKAGE = "nameofpackage")

which will be received in C with:

void nameofCfunction(int * edge, int * N)

where edge is a pointer to a C array of size 2N . The two nodes of the ith branch
will be accessed with edge[i - 1] and edge[i - 1 + N]. An alternative is to
pass separately the two columns of edge:

.C("nameofCfunction", as.integer(tr$edge[, 1]),

as.integer(tr$edge[, 2]), dim(tr$edge)[1],

PACKAGE = "nameofpackage")

with in the C program:

void nameofCfunction(int * edge1, int * edge2, int * N)

Now the two nodes will be accessed with edge1[i - 1] and edge2[i - 1]. A
complete tree structure may be passed with .C:

.C("nameofCfunction", as.integer(tr$edge), as.integer(tr$Nnode),

dim(tr$edge)[1], as.double(tr$edge.length),

as.character(tr$tip.label), as.character(tr$node.label),

PACKAGE = "nameofpackage")

received in C with:

void nameofCfunction(int * edge, int * nnode, int * N,

double * edge_length, char ** tip_label,

char ** node_label)

Note that other elements may be added in the arguments as long as they
are R vectors. The advantage of using .C is that data manipulation in C is
similar to any program in this language: the only constraint is that the function
receiving the data from R must have pointers and return void.

Using .Call or .External is more flexible:

.Call("nameofCfunction", tr, PACKAGE = "nameofpackage")

.External("nameofCfunction", tr, PACKAGE = "nameofpackage")

where tr may be any R data. But the data manipulation in C is more complex
since it deals with SEXP (S expression) structures:

SEXP nameofCfunction(SEXP tr)

This is advantageous if the number and/or size of elements is unknown in ad-
vance. An example can be found in the sources of ape (see src/bipartition.c and
R/dist.topo.R, or src/tree build.c and R/read.nexus.R).

4Matrices in R are actually vectors.
5Coercion to integers is not absolutely necessary if we are sure that the data are integers

which is the case with the values returned by dim and length.

11

7 Others

It is also possible to add further attributes to an object of class "phylo" such as
the number of tips (n), . . . also rooted (TRUE or FALSE), order ("cladewise"
or "pruningwise"),6 and so on. This may use attr or $.

In fact, any element may be appended in an object of class "phylo" like
any R object. Adding some information may be useful to store the results of
previous computations (as done with the class "phylog" in ade4).

8 Definition of the Class "multiPhylo"

An object of class "multiPhylo" is a list of one or several trees each of class
"phylo". It has two possible configurations:

1. All individual trees follow the definition in § 3, and the resulting list has
the class "multiPhylo".

2. The individual trees do not have an element tip.label, but otherwise fol-
low the definition in § 3, and the resulting list has the class "multiPhylo"
and an attribute TipLabel.

The second configuration implies that the ith tip in all trees have the same
label. This is useful when reading a list of trees read from a NEXUS file with a
TRANSLATE block: here the labels in the Newick are substituted by tokens 1,
2, . . . , n. ape takes directly these tokens and fills the matrix edge with them,
and the object of class "multiPhylo" returned has the attribute TipLabel taken
from the translation table of the NEXUS file.

Other functions, such as rmtree or read.tree, return a list with the first
configuration. It is possible to switch to the second configuration with the
internal function .compressTipLabel: it will eventually renumber the elements
of edge in each tree and delete the element tip.label. An error occurs if the
tip labels do not match among trees, or if some are duplicated within a tree.
The size of the object in memory is approximately halved:

> TR <- rmtree(100, 100)

> object.size(TR)

999456 bytes

> object.size(.compressTipLabel(TR))

435608 bytes

There are extraction and subsetting methods for the class "multiPhylo"

using $, [, and [[which set correctly the class and the elements of the returned
object:

> get("[[.multiPhylo")

6This one is used experimentally by some functions in ape.

12

function (x, i)

{

class(x) <- NULL

phy <- x[[i]]

if (!is.null(attr(x, "TipLabel")))

phy$tip.label <- attr(x, "TipLabel")

phy

}

<bytecode: 0x1e9cd78>

<environment: namespace:ape>

Manipulation of objects of class "multiPhylo" thus follows R’s standard
operations on lists. Note that such an object may contain only one tree in
which case it will eventually be extracted with TR[[1]].

Lists of trees can be passed to C code just like trees of class "phylo" (§ 6),
but here it is better to use the .Call or .External interface since the num-
ber of trees may be variable (for an example see the C function prop_part in
src/bipartition.c).

9 References

[1] Diaconis P. W. & Holmes S. P. 1998. Matchings and phylogenetic trees.
Proceedings of the National Academy of Sciences USA 95: 14600–14602.

[2] Felsenstein J. 2004. Inferring phylogenies. Sinauer Associates, Sunderland,
MA.

[3] Paradis E. 2006. Analysis of Phylogenetics and Evolution with R. Springer,
New York.

[4] Paradis E., Desper R., Gascuel O., Lefort V. &
Cuong H. S. 2008. The API to ape C code.
http://ape-package.ird.fr/misc/API_ape_C_code-26March2008.pdf.

[5] Valiente G. 2002. Algorithms on Trees and Graphs. Springer, New York.

13

http://ape-package.ird.fr/misc/API_ape_C_code-26March2008.pdf

	Introduction
	Terminology and Notations
	Definition of the Class "phylo"
	Memory Requirements
	Storage Mode
	Guidelines for Creating the Matrix edge

	Tree Manipulation
	Preorder Tree Traversal
	Finding a Clade
	Postorder Tree Traversal
	Relating Nodes and Tips to Other Data
	Tracking Nodes
	Example

	Uniqueness of Representation
	Passing Trees from R to C
	Others
	Definition of the Class "multiPhylo"
	References

