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1 Introduction

This document explains how phylogenetic trees are coded and handled in the
R package ape. Such data, like any R data, can be passed to C codes for
computing-intensive tasks. How these data can be manipulated efficiently in R,
and how they can be extended is discussed.

Phylogenetic trees are complex data structures: coding them in computer
programs requires special care. Felsenstein [2] outlines the coding used in most



computer programs for phylogenetic analyses. Such data structures cannot be
used easily in an interactive way because they are based on the recursive use of
pointers. In addition, they cannot be extended or modified without recompiling
the whole program. In R a different approach is used based on simple data
structures like matrices and vectors. The class "hclust", used by the function
hclust of the package stats, codes hierarchical clusters with a two-column ma-
trix indicating the pairings of observations. To code phylogenetic trees in R, it
was necessary to extend and modify this class substantially.

The class "phylo" introduced in ape in August 2002 has this aim. Its initial
definition in version 0.1 of ape has been useful in some applications. These and
some feed-back from users have pointed out to some weaknesses and limitations
of this initial definition. I detail below the new definition of the class "phylo"
introduced in ape 1.9 released in November 2006.

2 Terminology and Notations

branch: edge (= vertex)
node: internal node
tip:  terminal node (= leaf)
n: number of tips
m: number of nodes

3 Definition of the Class "phylo"

An object of class "phylo" is a list with, at least, the following mandatory
elements:

1. A numeric matrix named edge with two columns and as many rows as
there are branches in the tree;

2. A character vector of length n named tip.label with the labels of the
tips;
3. A numeric value named Nnode giving the number of (internal) nodes;

4. An attribute class equal to "phylo".

In the matrix edge, each branch is coded by the nodes it connects: tips are
coded 1, ..., n, and internal nodes are coded n+1,...,n+m (n+1 is the root).
Both series are numbered with no gaps.

The matrix edge has the following properties:

e The first column has only values > n (thus, values < n appear only in the
second column).

e All nodes appear in the first column at least twice.

e The number of occurrences of a node in the first column is related to the
nature of the node: twice if it is dichotomous (i.e., of degree 3), three
times if it is trichotomous (degree 4), and so on.



e All elements, except the root n + 1, appear once in the second column
(only if the tree has no reticulation).

This representation is used for rooted and unrooted trees. For the latter, the
position of the root is arbitrary.
The smallest tree of class "phylo" can be created in R with:

> tr <- list(edge = matrix(c(2, 1), 1, 2), tip.label = "a", Nnode = 1)
> class(tr) <- "phylo"

> str(tr)

List of 3

$ edge :num [1, 1:2] 21
$ tip.label: chr "a"

$ Nnode : num 1

- attr(*, "class")= chr "phylo"
The following elements are optional:

1. A numeric vector named edge.length with the branch lengths: this has
as many values of the number of rows of edge;

2. A character vector of length m named node.label with the labels of the
nodes;

3. A single numeric value named root.edge giving the length of the branch
at the root.

There is a correspondence between these elements and the structure of the
mandatory ones (e.g., the length of the ith branch edgeli, 1 is given by
edge.lengthl[il).

There are several substantial changes compared to the definition used until
version 1.8-5 of ape [3]: the most important one is that edge was previously
of mode character with a different coding (tips had positive numbers "1", ...,
"n", and nodes negative numbers "-1", ... "-m"). Compatibily is provided by
some functions in ape 1.9.

Note that this new definition still uses the S3 classes, though a switch to the
S4 classes may be envisaged in the future.

3.1 Memory Requirements

The table below gives the sizes as given by object.size () of three phylogenies
distributed with ape and often used in examples, and two random trees generated
with rtree. The column labelled “old” gives the size in bytes with the old
definition of the class "phylo", and the one labelled “new” gives the size using
the new definition.!

IThese figures were obtained with R 2.3.0; a more recent version gave slightly different
values (see Appendix).



tree n old new gain

bird.orders 23 5560 2816 1.97
bird.families 135 30,992 13,720 2.26
chiroptera 917 158,900 72,972 2.18

random tree 1000 216,396 88,596 2.44
" 10,000 2,160,396 880,596 2.45

The gain in terms of memory requirements is thus at least twice. Less than
1 Mb is needed to store a tree of 10,000 tips with the new definition. Given than
most computers have nowadays at least 1 Gb of RAM, this should make a wide
range of analyses feasible.

3.2 Guidelines for Creating the Matrix edge

In the matrix edge, each row represents a branch: the node in the first column
is the origin of the branch, and the node or tip in the second column is its end.
Note that for unrooted trees, this order is arbitrary (except for the terminal
branches) because the position of the root is also arbitrary. This representation
allows a lot of generalizations, such as multichotomies (here n =3, m =1) ...

> matrix(c(rep(4, 3), 1:3), 3, 2)

[,1] [,2]
(1,1 4 1
[2,1 4 2
[3,] 4 3

. or reticulations (n = 4, m = 3):
> cbind(c(5, 6, 6, 6, 5, 7, 7), c(6, 1, 2, 7, 7, 3, 4))

(.11 [,2]
[1,] 5
[2,]
[3,]
[4,]
(5,1
(6,1
[7,1]

NN o oo
BWw NN RO

There is an arbitrary direction (6 — 7), from the smallest number to the largest
one. At the moment, it is still an open question whether these reticulations
should be coded in the matrix edge, and should rather be stored in a distinct
matrix to avoid confusion.

There is no mandatory order for the rows of edge, but they may be arranged
in a way that is efficient for computation and manipulation. For instance, con-
sider the tree in Newick format:

"G, G

Then the two following matrices are similar for edge:



> cbind(c(5, 6, 6, 5, 7, 7), c(6, 1, 2, 7, 3, 4))

[,11 [,2]
[1,] 5 6
[2,1 6 1
[3,] 6 2
(4,1 5 7
[5,] 7 3
(6,1 7 4

> cbind(c(5, 5, 6, 6, 7, 7), c(6, 7, 1, 2, 3, 4))

[,11 [,2]
[1,] 5 6
[2,] 5 7
[3,] 6 1
[4,] 6 2
(5,] 7 3
[6,] 7 4

In the first representation the branches are grouped cladewise, whereas in
the second one the internal branches come first. Any order of the rows are
valid with respect to the above definition. However, the cladewise order has an
interesting feature: it is straightforward to find all the branches descendant of
a given node (see § 4.2).

There is another interesting order:

> cbind(c(6, 6, 7, 7, 5, 5), c(1, 2, 3, 4, 6, 7))

[,1] [,2]
[1,1 6 1
[2,] 6 2
[3,] 7 3
(4,1 7 4
(5,] 5 6
(6,] 5 7

Here, the branches are arranged so that a “pruning” calculation (or postorder
tree traversal) can be done by reading down the rows of edge. Additionally, if
some conventions are taken, this arrangement can lead to a unique representa-
tion for a given tree in the same way than the matchings proposed by Diaconis
& Holmes [1].% T shall call the above order pruningwise.

4 Tree Manipulation

The table below shows how to perform a few basic operations on objects of class
"phylo" in R.

2Matchings work only for rooted dichotomous trees.



How many tips? length(tr$tip.label)

How many nodes? tr$Nnode
How many branches? dim(tr$edge) [1]
How to find node x? which(tr$edge == x) or

which(tr$edge == x, TRUE)
What is the ancestor of node x? i <- which(tr$edgel[, 2] == x)
tr$edge[i, 1]
What are the terminal branches? n <- length(tr$tip.label))
which(tr$edgel, 2] >= n)

Of course, each of these commands may be wrapped in a function, for in-
stance:

getNtips <- function(phy) length(phy$tip.label)

4.1 Preorder Tree Traversal

Preorder tree traversal means here: travelling through the tree from the root
to the tips. If an object of class "phylo" is in cladewise order, then the first
element of the first column of edge is, by definition, the root and numbered
n + 1. This is true whether the tree is rooted or not (remind that the root is
arbitrary in the latter case). The beginning and end of each clade connected to
the root is found with:

start <- which(tr$edgel, 1] == length(tr$tip.label) + 1)
end <- c(start[-1] - 1, dim(tr$edge) [1])

The MRCA of these clades (i.e., the direct descendants of the root) can be found
with:

tr$edge [start, 2]
As an example, we take the avian families tree:

> library(ape)

> data(bird.families)

> n <- length(bird.families$tip.label)

> start <- which(bird.families$edge[, 1] == n + 1)

> end <- c(start[-1] - 1, dim(bird.families$edge) [1])
> start

[1] 1 28
> end
[11 27 271

The two nodes connected to the root are:
> bird.families$edge[start, 2]

[1] 139 152



This can be checked graphically with:

plot(bird.families)
nodelabels ()

This approach can then be applied repeatedly from the root to the tips. For
instance, we find that the first node descendant of the root is tr$edge [start [1],
2]: we may thus replace “n + 1” above by this value, and “dim(tr$edge) [1]”
by “end[1]™:

startB <- which(tr$edgel, 1] == tr$edgelstart[1], 2])
endB <- c(startB[-1] - 1, end[1])

Note the new names startB and endB; in practice, this may be simplified by
using, for instance, recursive calls to a function (see § 4.6).

If the object tr is in pruningwise order, then tree traversal may be done
through successive search of node and tips numbers using which (as was done
by most functions in ape). However, this is less efficient.

4.2 Finding a Clade

For an arbitrary node, say nod, the approach above may be adapted to the
following algorithm:

1. Find the node ancestor of nod, store its number in anc, and store the
number of the branch in i.

2. Find the next occurrence of anc in tr$edgel, 1], store it in j.

The clade descending from nod is given by the rows i+ 1 to j —1 of tr$edge.
This algorithm coded in R is:

i <- which(tr$edgel[, 2] == nod)
anc <- tr$edgeli, 1]

tmp <- which(tr$edgel, 1] == anc)
j <= tmp[which(tmp == i) + 1]
tr$edge[(i+1): (j-1), ]

Note that it is straightforward to translate this code in C.

4.3 Postorder Tree Traversal

Postorder tree traversal means here: travelling through the tree from the tips to
the root. If the object tr is in pruningwise order, then postorder tree traversal is
straightforward by descending along the rows of tr$edge. Otherwise, successive
searches must be done.

4.4 Relating Nodes and Tips to Other Data

Use numeric indexing (more efficient) if possible, otherwise use names or any
other way to assign the value to its node or tip.



4.5 Tracking Nodes

The problem of tracking a node through successive tree manipulation is not easy
because nodes are numbered sequentially. For instance, if two trees are binded,
the node numbers of one of them must be changed. The solution to this problem
is to use the element node.label. Node labels may be created easily with:

tr$node.label <- paste("node", 1:tr$Nnode, sep = "")

If a second tree, say trb, is involved here:

trb$node.label <- paste("trb_node", 1:trb$Nnode, sep = "")
Both trees may be binded now.

trc <- bind.tree(tr, trb)

To find the node number of say "trb_nodel" in the new tree:

which(trc$node.label == trb_nodel)

4.6 Example

As an example of using the new definition of the class "phylo" and the guidelines
above, I rewrote the function rtree. The logic of the algorithm is the same in
both versions: splitting repeatedly a pool of n tips until splitting cannot be done.
But the implementations in R are different. In the old version, the branches were
defined successively and the matrix edge was filled along its rows; the latter were
reordered at the end. In the new version, the rows are filled with respect to the
size of the clades using a recursive function, so that no reordering is needed at
the end. The following table compares the timings of the two versions.?

n old new gain

10 0.026 0.0006 43
100 0.290 0.003 100
1000 4.017 0.030 134

This shows that considerable improvement can be achieved even using R
codes only. Furthermore, the algorithm is now more appropriate to be coded in
C, so that more improvement seems possible. Note that the operation done by
rtree is actually a preorder tree traversal: thus, this operation can be done in
a very short time with R code.

5 Uniqueness of Representation

At the moment, this remains unsolved bacause even adopting one of the rules
described above for the order of the branches may lead to several representations
of the same tree. Additional rules are needed. Some open questions:

3Timings averaged over 100 consecutive repetitions with a for loop, processor at 1.86 GHz,
2 Gb RAM, Linux Knoppix 4.0, R 2.3.0, ape 1.8-3.



e Is there an order that makes tree manipulation optimal? (see above for
some partial answers)

e Do we really need a standard, unique order?

Keep in mind that the rules should work for rooted and unrooted, dichoto-
mous and multichotomous trees, as well as reticulograms.

6 Passing Trees from R to C

Because the class "phylo" uses only vectors,? it is easy to pass these data to C
using the R function .C. For instance, the matrix edge may be passed with:

.C("nameofCfunction", as.integer(tr$edge),
as.integer (dim(tr$edge) [1]), PACKAGE = "nameofpackage")

which will be received in C with:
void nameofCfunction(int * edge, int * n)

where edge is a pointer to an array of size 2n. The two nodes of the ith branch
will be accessed with edge[i - 1] and edge[i - 1 + n].

An alternative, maybe easier, solution is to pass separately the two columns
of edge:

.C("nameofCfunction", as.integer(tr$edgel, 1]1),
as.integer(tr$edgel, 21),
as.integer(dim(tr$edge) [1]), PACKAGE = "nameofpackage")

with in the C program:
void nameofCfunction(int * edgel, int * edge2, int * n)

Now the two nodes will be accessed with edgel1[i - 1] and edge2[i - 1]. A
complete tree structure may be passed with .C:

.C("nameofCfunction", as.integer(tr$edge), as.integer (tr$Nnode),
as.integer(dim(tr$edge) [1]), as.double(tr$edge.length),
as.character (tr$tip.label), as.character(tr$node.label),
PACKAGE = '"nameofpackage")

received in C with:

void nameofCfunction(int *edge, int *nnode, int *n,
double *edge_length, char **tip_label,
char **node_label)

Note that other elements may be added in the arguments as long as they
are R vectors. The advantage of using .C is that data manipulation in C is
similar to any program in this language: the only constraint is that the function
receiving the data from R must have pointers and return void.

Using .Call or .External is more flexible on the R side:

4Matrices in R are actually vectors.



.Call("nameofCfunction", tr, PACKAGE = "nameofpackage")
.External ("nameofCfunction", tr, PACKAGE = "nameofpackage")

where tr may be any R data. But the data manipulation in C is more complex
since it deals with SEXP (S expression) structures:

SEXP nameofCfunction(SEXP tr)

This is advantageous if the number and/or size of elements is unknown in ad-
vance. An example can be found in the sources of ape (see src/bipartition.c and
R/dist.topo.R).

7 Others

It is also possible to add further attributes to an object of class "phylo" such as
the number of tips (n), ... also rooted (TRUE or FALSE), order ("cladewise"
or "pruningwise"), and so on. This may use attr or $.

In fact, any element may be appended in an object of class "phylo" since it
is a list. Adding some information may be useful to store the results of previous
computations (as done with the class "phylog" in ade4).

8 Future Developments

The development of ape goes along many lines. Three points need to be men-
tioned in the present context:

e Finishing a completely documented API;
e Breaking ape in several (five?) packages;

e Developing an interface between the coding described here and the tradi-
tional one [2] at the C-level.
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A  Memory Requirements (bis)

The following figures were obtained with R 2.4.0.

tree n old new @  gain @
bird.orders 23 5112 2712 (2360) 1.88 (2.17)
birdfamilies 135 28,280 13,168  (11,000) 2.15 (2.57)
chiroptera 917 150,264 75,080  (64,328) 2.00 (2.34)
random tree 1000 196,368 84,544  (68,560) 2.32 (2.86)
" 10,000 1,960,368 840,544 (680,560) 2.33 (2.88)

@ forcing storage mode as integer when possible

The figures in parentheses are when the storage mode of integer values is
forced to be integer, e.g.:

> library (ape)
> tr <- rtree(1000)
> object.size(tr)

[1] 84544

> storage.mode (tr$edge)

[1] "double"

> storage.mode (tr$edge) <- "integer"
> storage.mode (tr$Nnode) <- "integer"

> object.size(tr)

[1] 68560
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